Free Boundaries and Finite Elements in One Dimension
نویسندگان
چکیده
Two problems in control theory, one with state constraints and the other with control constraints, have been approximated by the finite element method. This discretization has been applied to both the primal and the dual formulation, in order to make a number of observations and comparisons: 1. The rate of convergence as the grid interval h is decreased, for polynomial elements of different degrees. 2. The presence or absence of a boundary layer in the error, concentrated at the "contact points" where the constraints change between binding and nonbinding. 3. The advantages of simpler constraints in the dual formulation, and the disadvantages of replacing strict convexity by ordinary convexity. 4. The numerical efficiency of each possible variation in achieving an approximate solution of reasonable accuracy. We concluded that in our model problems, linear elements and the dual method provide the most efficient combination.
منابع مشابه
Theoretical, numerical, and experimental analyses of free vibrations of glass fiber reinforced polymer plates with central cutouts and free boundaries
This study explored the free vibration problem in relation to glass fiber reinforced polymer (GFRP) plates with central cutouts and free boundaries using theoretical, experimental, and numerical methods. The theoretical formulations were derived from the classical lamination plate theory. The rectangular cutout was mathematically modeled into the stiffness matrix of the plate by multiplying Hea...
متن کاملCalculation of Thermodynamic Properties of the Quasi-one Dimensional Liquid 3He at Finite Temperature
We have used a variational approach to calculate some thermodynamic properties of the quasi-one dimensional liquid 3He such as the energy, entropy, free energy, equation of state and heat capacity at finite temperature. We have employed the Lennard-Jones potential as the inter-atomic interaction. We have seen that the total energy increases by increasing both temperature and density....
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملModified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials
In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010